2017A3277, 2017A3393, 2017B3277

BL08B2, BL24XU

兵庫県ビームライン研修会実施報告

Report of Trial Use Projects at Hyogo Prefectural Beamlines

漆原 良昌, 桑本 滋生, 津坂 佳幸, 松井 純爾

¹Yoshimasa Urushihara, ¹Shigeo Kuwamoto, ²Yoshiyuki Tsusaka, ¹Junji Matsui

兵庫県立大学¹放射光ナノテクセンター,²物質理学研究科

¹Synchrotron Radiation Nanotechnology Laboratory & ²Graduate School of Material Science, University of Hyogo

概要:兵庫県ビームライン BL24XU/BL08B2 において,座学と実習で構成した研修会を開催した.BL24XU では,サブミクロンスケールで3次元構造を可視化できる「結像型 X 線顕微 CT 測定」,ミクロンスケールの 位置分解能を有し,局所領域で材料の長周期構造を評価できる「マイクロビーム小角 X 線散乱測定」,そして 新規な高空間分解能トポグラフィ法として開発した「明視野 X 線トポグラフィ測定」の3 手法について実施 した.BL08B2 では,材料開発において重要な実環境下における構造評価(その場観察)を目的とした整備が 進められており,近年導入した冷却加熱炉を利用した「小角 X 線散乱『その場観察』測定」を実施した.

キーワード:研修会,結像型 X 線顕微 CT,マイクロビーム X 線,小角 X 線散乱,明視野 X 線トポグラフィ, その場観察

背景と研究目的

放射光利用の分析手法は,環境エネルギー,電子デバ イス, 高機能素材, 食品など様々な産業分野で活用され ており, 産業界にとって研究開発する上で必須ツール となっている.兵庫県ビームラインBL08B2/BL24XU では多種多様な測定手法を取り揃え利用展開されてい る. これまで新規の産業界企業ユーザーへの利用拡大 を図るために,無償のトライアル測定を実施してきた. しかしながら、トライアル測定は原則として「各企業 1回限り」であり、既にユーザーとなっている企業で は,利用したことない手法を「お試し」する機会は無 い. このような状況は、企業ユーザーへの利用拡大、 利用手法の多様化を積極的に進める上で支障となって いる.そこで現在展開している測定手法について,企 業ユーザーにトライアル利用相当の広宣の機会を提供 することを目的として研修会の開催を企画した. また 研修会を通じて参加ユーザーとコミュニケーションを 図り、その結果を測定手法の改善にフィードバックす ることも目的とした.研修会は、ビームラインの概要 および測定手法の説明を行う座学と各参加企業グルー プが持参した試料を測定する実習の2部構成とした. 2017 年度は, BL24XU にて,「結像型 X 線顕微 CT」, 「マイクロビーム小角 X 線散乱測定」,「明視野 X 線ト ポグラフィ」, BL08B2 にて「小角 X 線散乱「その場 観察」測定」,の研修会を開催したので,詳細を個別 に報告する.

BL24XU 結像型X線顕微CT研修会

(1) はじめに

結像型 X 線顕微 CT は,非常に高い空間分解能を 有する CT (Computed Tomography)であり,通常 の投影型 X 線 CT では不可能なサブミクロンスケー ルの構造を 3 次元的に可視化できる.研修会では,結 像型 X 線顕微 CT の測定に関する基礎知識の習得を 目的とした座学と,参加ユーザーの持込試料に対して 試料セッティング,測定,CT 再構成までの一連の実 習を行った.研修会は 2017 年度 A 期 6 月に開催し, 参加企業グループは,株式会社 コベルコ科研,株式 会社 住化分析センター,株式会社 東レリサーチセン ター,株式会社 豊田中央研究所,トヨタ自動車株式 会社,株式会社 日産アーク,株式会社 MORESCO の 7 グループであった. Status Report of Hyogo-Beamlines with Research Results, Vol. 5, 6 (2016, 2017)

(2) 実験条件·装置

図1には、結像型X線顕微鏡の外観を示した。 BL24XUでは、広視野を確保できる平行照明型を採 用しており、フレネルゾーンプレート (FZP) を対物 レンズとした結像光学系を構築し,CT 測定を行って いる [1]. 使用した FZP (NTT-AT 製) は, 吸収体材 料:Ta, 直径:416 µm, 最外輪帯幅:86.7 nm, 厚 さ:700 nm である. X 線光子エネルギーを 8 keV, 試 料-X 線画像検出器間距離を約 5600 mm とすること で,視野:100 µmH × 164 µmW,実効ピクセルサイ ズ:80 nmの光学系を構築した.空間分解能評価用に Siemens チャート(NTT-AT 製: XRESO-50HC)を 撮影した結果(図2)より、本装置光学系は150 nm のライン-スペースが解像できる性能を有することが 確認できた. CT 測定の条件は露光時間: 0.5 秒, 投 影像:1200枚/180°を基本とし、研修会参加企業各 グループの持込試料の測定を行った. 持込試料は各グ ループ2 試料であり、アルミニウムやセラミック等の 金属・無機系試料から高分子系の有機系試料まで多岐 に渡っていた.

Fig. 1. Overview of full-field X-ray micro-CT station.

(3) 実験結果

金属・無機系試料の測定例として,アルミニウム ロッドの CT 像を図3に示した.アルミニウムロッド は圧延後に焼きなまして再結晶化したものである.不 純物成分である Si が析出し圧延方向に延びている様 子が明瞭に観察できた.その他,ロッド中に存在する 1 µm 以下の空隙も観察できていた.一方,一部の有 機系試料においては,高強度 X 線照射の影響と思わ れる試料変形が確認された.そこで露光時間を 0.25 秒,投影枚数を 900 枚/180° とし,X 線の全照射時間

Fig. 2. X-ray image of Siemens chart.

を半分以下した結果,シグナル/ノイズ比は低下する ものの CT 再構成が可能となった.このように測定で は試料に依存して実験計画を検討する必要があること を確認した.この点に関しては,ユーザがマシンタイ ムを最大限効率よく活用し,成果を創出できるよう, 実験計画の検討システムづくりも必要であると考えら れる.従来は,経験的な判断を頼りとして適当に測定 パラメータをその場で選択する場合が多かったが,こ れに対して実験計画の段階で試料に応じた最適な測定 条件の導出を導き出す方法や(機械学習の応用など), データベースを活用した実験予想のシミュレーターの 導入を検討したい.

測定例として,ナノダイヤを分散した高分子樹脂試料のCT結果を図4に示した.画像は一軸延伸・破断前後の断層像である.破断後の試料ではナノダイヤに

Fig. 3. Volume renderings of reconstructed aluminum rod.

Fig. 4. Cross sectional images of reconstructed nanodiamond-dispersed polymer resign before and after the tensile test.

接して空隙が生成しており,界面破壊を生じている様 子が観察できた.

(4) まとめ

2017 年度最初の研修会として結像型 X 線顕微 CT の研修会を行った.参加ユーザーのほとんどが未経験 であり,測定試料の調整法,測定条件の設定の重要性 等を重点的に講習した.特に有機系物質を測定する際 には,低コントラストならびに放射線ダメージの問題 が顕著であり,屈折コントラストの利用,ドーズ量の 低減化などの対処法について理解を得た.今後,結像 型 X 線顕微 CT が企業の研究・開発において有用な ツールとして認識され,ビームライン利用拡大に繋が るとともに,測定結果が実空間の3次元画像であると いう PR 力を活かした利用も期待される.

ユーザーから装置の高度化に対する意見を聞くこと ができた.複数のユーザーから試料交換装置(サンプ ルチェンジャー)の導入を切望された.理由として, 近年の装置高度化により測定時間の短縮し,試料交換 作業,特に実験ハッチの開閉作業が最も非効率的な作 業の1つとなっていることが挙げられていた.また長 時間の実験において,単純な人為的ミスが主に試料交 換作業で生じる指摘もあった.以上のことから,効率 的かつ安定的な測定環境を実現するため,CT測定用 の自動交換装置の早期導入を目指し検討を始めている.

BL24XU マイクロビーム小角 X 線散乱測定研修会

BL24XU-A2 実験ハッチにて企業ユーザーを対象と したマイクロビーム小角 X 線散乱(μ-SAXS) 測定研 修会を 2017 年度 B 期 10 月に開催した. 数ミクロンサ イズのマイクロビーム X 線を利用した μ-SAXS 測定 を行うことで、測定試料局所位置の周期構造や粒子・ 空孔サイズ,配向性等のナノ構造を評価することがで きる. さらにスキャニング測定を行うことで, 不均一 構造試料のナノ構造分布評価が可能となる.今回の研 修会では、顕微鏡を用いて試料へのビーム照射位置を 調整し、ピンポイント測定あるいはスキャニング測定 を行い試料局所のナノ構造から生じる散乱を観察する 実習を行った.参加企業は、株式会社コベルコ科研, 株式会社住化分析センター、昭和電工株式会社、住友 電気工業株式会社、日鐵住金テクノロジー株式会社の 5社であり、実習をとおして μ-SAXS 測定の基礎なら びに測定手順の講習を行うことを目的とした.

(2) 実験条件·装置

実験は兵庫県ビームライン BL24XU-A2 実験ハッチ 内の μ -SAXS 装置を利用して行った.利用 X 線エネ ルギーは 10 keV, SAXS カメラ長は 0.6 m,検出器 は PILATUS3-X-300K を利用した.マイクロビーム 形成は集光素子として屈折レンズを利用し,ビームサ イズは試料位置(ビーム照射位置)で 3 × 3 μ m,フォ トン数は 3 × 10⁹ photons/sec.である.この条件で の測定レンジは,散乱ベクトルにして $q = 0.10 \sim 5.0$ nm⁻¹ であった.ビーム照射位置の調整は,マイクロ ステップ試料自動ステージと小型ズーム顕微鏡を利用 し,モニター画面上で調整することができる.実験装 置の外観を図 5 に示す.

Fig. 5. Overview of μ -SAXS station.

(1) はじめに

Status Report of Hyogo-Beamlines with Research Results, Vol. 5, 6 (2016, 2017)

(3) 実験結果

実習実験としてポリエステル繊維、ブリーチ処理毛 髪のμ-SAXS 測定を実施した.最初にデンタルフロス で利用されるポリエステル繊維を用いてマイクロビー ム照射位置調整の実習を行った.図6(a)にポリエステ ル繊維の顕微鏡画像を示す. 画像上の白線の交差位置 がビーム照射位置である. 自動ステージを用いてビー ム照射位置を直径約 40 µm の繊維中心へ調整し測定 を実施した. 露光時間 10 秒にて図 6(b) のポリエステ ル繊維の SAXS 散乱像が得られた.繊維軸方向に散 乱ベクトル $q = 0.53 \text{ nm}^{-1}$, d = 12 nm の位置に特 徴的な回折ピークが観察された. これは繊維中のマイ クロフィブリル内の微結晶ドメイン間隔に由来してい る. このように μ-SAXS 測定では繊維 1 本で解析可 能なデータを得ることができる.また、繊維径に対し てビームサイズが十分小さいため, スキャニング測定 を行うことで繊維の局所構造分析も可能である.

次にブリーチ処理した毛髪の測定を実施した.1本 の毛髪に繊維軸と垂直な方向からビーム照射し、直径 約80 µm の毛髪に対して2µm ステップにて水平方向 100 µm 範囲のスキャニング測定を行った. 1ショット の露光時間は10秒で、このスキャニング測定に要す る時間は10分弱であった.図7はスキャニング測定 から得られた毛髪中心(a)とキューティクル層(b) の散乱像である.図7(a)中の矢印1は毛髪軸に沿って 配列するケラチン繊維からの回折 $(q = 0.7 \text{ nm}^{-1})$, 矢印2は毛髪中心メデュラを満たしている脂質回折 $(q = 1.5 \text{ nm}^{-1})$ である.また,図 7(b) 中の矢印 3 は、キューティクル中の CMC 脂質層からの回折であ る. 今回の試料はブリーチ処理した毛髪を用いてお り、ブリーチ処理の有無でケラチン繊維やキューティ クル CMC 構造に変化は観察されなかったが、キュー ティクル層に矢印4の回折 ($q = 1.1 \text{ nm}^{-1}$)が観察さ れた.これはブリーチ処理によりキューティクル層に 入り込んだ乳化剤や薬剤の可能性がある.このように μ-SAXS スキャン測定を利用することで毛髪中の局所 構造に由来した散乱像を取得することができる.

(4) まとめ

今回の µ-SAXS 研修会では,µ-SAXS 測定の基礎 と測定手順に加えて,マイクロビーム実験に適した試 料調整方法や大きな問題となる放射線ダメージにつ いての講習も行った.また実習実験から,微小試料や 不均一局所構造試料の評価・分析技術として µ-SAXS

Fig. 6. (a) Microscopic view and (b) SAXS pattern of polyester fiber.

Fig. 7. SAXS patterns of bleached human hair.

測定が有効な技術であることを確認した.今後,企業 の材料開発や研究において, μ-SAXS 測定が材料分析 手法の一部としてビームライン利用拡大に繋がると考 える.

兵庫県ビームライン年報・成果集

BL24XU 明視野X線トポグラフィ測定研修会

(1) はじめに

通常, X線トポグラフィは回折像を撮影するが, 明 視野 X線トポグラフィは, 回折を起こさせながらそ の透過像を撮影する. そのため, 検出器を回折ビーム の位置に移動させる必要が無い. また, 多波回折条件 近傍で撮影すると, 回折ベクトルの変更を迅速に行え る. 研修会は, 実習を通して明視野 X線トポグラフィ に関する基礎知識ならびに実際の結晶の欠陥像が「ど のくらい見えるのか」, また「取得像の理解」を体験 することを目的として実施した. 研修会は 2017 年度 B期 11 月に開催した. 参加企業は, 株式会社 東レリ サーチセンター, 日鉄住金テクノロジー株式会社の 2 社であった.

(2) 測定系および観察結果

ビームラインモノクロメータから 15 keV のX線を 取り出し,試料に照射後その透過像を可視光変換型 CMOS カメラで撮像する (図 8) [2]. 空間分解能評価 用に Siemens チャート (NTT-AT 製:XRESO-50HC) を撮影した結果より,可視光変換型 CMOS カメラは 1 μ m のライン-スペースが解像できる性能を有する ことが確認できた. 1 ショットの露光時間は数 10 ~ 数 100 msec とした.

Fig. 8. Experimental setup.

測定例として c 面サファイア結晶を用い,6 波近似 条件として,0000,4-2-20,3-300,30-30,1 -210,11-20の回折波を同時に励起し,その近傍 で結晶を0.1°程度回転して,それぞれの回折を励起 した状態での透過像を撮像した(図9).その透過像 の一部を図10に示す.図10(b)では,OB方向に伸 びた転位線のコントラストが消失していることから, この転位線のバーガースベクトルが,[11-20]に平 行であることが分かる. 研修会への持込試料は、両グループとも c 軸から 4° off の SiC 結晶であった.サファイアとの結晶構造因 子の違いから、6 波近似条件として、0000,20-2 0、2-1-10、11-20、01-10、1-100の回折波を 同時励起した.サファイア結晶同様それぞれの回折を 励起した状態での透過像を撮像し、いくつかの転位線 についてそのバーガースベクトルを決定できた.

Fig. 9. Brilliant diffraction spots on a fluorescence sheet by multiple x-ray diffractions under (a) the six-wave and (b) the two-wave approximation conditions, where the 0000- and $3\overline{3}00$ -reflection images are similar to a bright-field TEM image. Spots A, B, C, D, and E in Fig. 9 (a) correspond to the $4\overline{2}\overline{2}0$ -, $3\overline{3}00$ -, $30\overline{3}0$ -, $1\overline{2}10$ -, and $11\overline{2}0$ -reflections, respectively. Spot O correspond to the direct xray beam (0000-reflection) transmitting through the crystal at point P.

Fig. 10. Bright field topographs imaged under (a) the six-wave and (b) the two-wave approximation conditions (similar to a bright-field TEM image), which correspond to the activated diffractions shown in Figs. 9(a) and 9(b), respectively.

(3) まとめ

研修会に参加したユーザーの一部は通常の X 線ト ポグラフィの経験はあるが、多波近似条件近傍での明 視野 X 線トポグラフィの経験はなく、測定試料の調整 法、測定条件の設定の重要性等を重点的に講習した. 特にどの組み合わせの多波回折条件を選ぶかは、転位 のバーガースベクトル,結晶構造因子に依存し,迅速 なバーガースベクトル決定の際の重要性について理解 を得た.

研修会はユーザーの声を直接聞くことのできる貴重 な機会であった.装置の高度化において最も要望の声 が高かったものは、トポグラフ像の高コントラスト化 であった.特に結晶構造因子が小さい回折では、回折 で失われる X 線が少ないため、透過像に現れる欠陥 像のコントラストが低くなる.これを解決するために は、入射ビームの角度発散や、エネルギー幅をその回 折のダーウィン幅程度に小さくする必要がある.それ は、ビームラインモノクロメータの下流にさらにチャ ンネルカット結晶を導入することで解決できると考え ている.また、モノクロメータの熱ひずみや、ビーム ライン上の Be 窓が透過像バックグラウンドになって いる.これらは、それぞれのコンポーネントの交換や、 拡散板の導入などで対応していきたいと考えている.

BL08B2小角X線散乱「その場観察」測定研修会

(1) はじめに

企業ユーザーを対象に小角 X 線散乱その場観察測 定の研修会を 2017 年 7 月に開催した. 放射光を利用 した小角 X 線散乱 (SAXS) 測定は,材料中の周期構 造や配向性,微粒子や空孔の粒度分布等を数ナノメー トルから数百ナノメートルのスケールで評価するこ とができる.そして加熱炉や引張機等の実験装置と組 み合わせることで,動的な構造変化の評価,すなわち 「その場観察」測定が可能となる.研修会では,冷却 加熱炉を利用した SAXS その場観察測定を実施し,試 料の温度変化に伴う構造変化の観察を行う実習を行っ た.参加企業は,株式会社住化分析センター,マツダ 株式会社,住友電気工業株式会社の3社があり,この 実習をとおして,SAXS 測定の基礎ならびに測定手順 や基本的なデータ処理方法の講習を行うことを目的と した.

(2) 実験条件·装置

実験は兵庫県ビームライン BL08B2 実験ハッチ 2 内 の小角 X 線散乱装置を利用して行った.エネルギーは 8 keV, SAXS カメラ長は 6 m,検出器は二次元半導 体検出器 PILATUS3-300K を利用した.ビームサイ ズは試料位置で $0.3 \times 0.3 \text{ mm}^2$,集光位置である検出 器面上で $0.1 \times 0.2 \text{ mm}^2$ である.この実験条件にて, 測定レンジは散乱ベクトル $q = 0.0156 \sim 0.450 \text{ nm}^{-1}$ である.入射光強度 I_0 は試料直前のマイクロイオン チャンバーにて計測し,透過光強度 I_1 は検出器真空 パイプ内のビームストッパー内蔵強度モニターにて計 測した. $I_0 \ge I_1$ から透過率を算出し散乱強度の補正 に用いている.

利用した冷却加熱炉は、リンカム社製冷却加熱ス テージ10033Lである.この冷却加熱炉はビームライ ン整備ユーティリティであるため、ユーザーはいつ でも利用可能である.制御可能な温度範囲は-190~ 600°C,試料サイズは φ15 mm,厚さ1 mm まで利用 可能である.透過配置時のX線透過穴(ヒーターブ ロックの穴)サイズは φ2 mm である.上流・下流側の 窓はカプトン薄膜あるいは合成石英薄膜を利用可能で あり、低エネルギーでも十分な透過率が確保できる. 今回の実験ではカプトン薄膜を使用した.

冷却加熱炉を利用した SAXS 測定は自動化されて いる.冷却加熱炉の温度変化チャートに合わせて等時 間間隔での SAXS 測定や決められた温度での SAXS 測定が可能である.また,冷却加熱炉には試料表面温 度を計測し出力可能な改良を行っており,これにより SAXS 測定時に X 線透過率と同時に試料温度を自動 的に記録できるシステムを構築している.冷却加熱炉 の退避機構も設けており,試料交換時に実験ホール側 へ冷却加熱炉を退避することでユーザーは容易に試料 交換が可能である.実験装置の外観を図 11 に示す.

Fig. 11. Instrumental setup for *in-situ* SAXS measurements with a freezing-heating stage.

(3) 実験結果

実習実験として構造配向性ポリエチレン(PE)フィ ルムの加熱測定を実施した.加熱温度は融点近傍の 125°Cまでとし,階段状に昇温しながらSAXS測定 を実施した.露光時間10秒で十分な散乱強度が得ら れた.実験結果を図12に示す.昇温に伴い図12(a) の二次元散乱像の変化と図12(b)の散乱曲線の変化が 観察された.図12(b)の散乱曲線で特徴的なピーク・ショルダーは、PE 階層構造中の結晶ラメラ構造(主 にラメラ間距離)と考えられる.昇温に伴いこのピー クは低角側へシフトしラメラ間距離の長周期化が観 察された.今回の実験条件ではPE 階層構造中の結晶 フィブリル構造(ミクロンオーダー)の変化はカメラ 長不足のため観察することができなかった.更に小角 領域を観察するためには、カメラ長を更に長くした Ultra-SAXS 測定が必要である.また,階層構造を形 成する試料では、幅広い角度範囲の散乱曲線を得るた めに複数のカメラ長での SAXS 測定が必要であるこ とを再確認した.

Fig. 12. (a) SAXS patterns and (b) profiles observed during the heating of PE film.

(4) まとめ

SAXS実験経験の浅い企業ユーザーを対象に SAXS 研修会を実施した.今回の SAXS 研修会では,SAXS 測定の基礎に加えて,十分な散乱強度を得るための試 料条件や観察目的の構造サイズに合わせたカメラ長選 択の重要性等の実験技術面での講習も行った.また, その場観察測定の実習から,試料の物性と構造との相 関性を理解する上で,その場観察測定が有効であるこ との理解を深めることができた.今回は兵庫県ビーム ラインでの研修会であったが,参加企業が他の SAXS ビームラインを利用する場合においても,実験条件・ 計画の立案に役立つと考える.

今後の展開

2017 年度は BL24XU, BL08B2 合わせて計 4 回の 研修会を開催した.2017 年 5 月に企画し,6 月から 実行したため準備不足感は否めなかったものの,述べ 17 企業グループ,34 名(見学者含む)の参加があり, いずれの研修会も参加ユーザーから高い評価を得た. すでに研修会から利用につながったユーザーもあり, 実施効果が現れている.

研修会では、ユーザーと積極的に意見交換を行った. 研修会の開催は好意的に受け止められており、継続的 かつ定期的な開催が望まれている.本年度の研修会 では、日程の都合がつかず不参加となったユーザーも あり、募集から開催までの日程、開催間隔・回数など 検討すべき課題がある.内容に関しては、X線回折、 X線吸収分光など兵庫県ビームラインで供与してい る他の測定手法に加えて、新しく導入されたユーティ リティ設備や検出器を利用した測定の実施要望があっ た.また一部のユーザーより、研修会をトライアル測 定の機会だけではなく、放射光利用業務の新人教育の 機会としての期待の声があった.今後もユーザーの声 を反映し、問題点を改善しつつ、引続き研修会を開催 していく予定である.

参考文献

- H. Takano, Y. Urushihara and J. Matsui: SPring-8 Research Frontiers 2010, 140 (2011).
- [2] Y. Tsusaka, S. Takeda, H. Takano, K. Yokoyama, K. Kagoshima and J. Matsui: *Rev. Sci. Instrum.* 87, 023701 (2016).